当前位置:首页 > 欧陆 > 正文

点线距离公式是什么

  • 欧陆
  • 2023-03-22 09:30:12
  • 129
摘要: 数学里点到直线的距离公式是什么? 一般情况下,点与直线的距离,是指点到直线的最短距离,即垂直距离。 在二维直角坐标中,直线Ax+...

数学里点到直线的距离公式是什么?

一般情况下,点与直线的距离,是指点到直线的最短距离,即垂直距离。 在二维直角坐标中,直线Ax+By+C=0与点(p,q)的最短距离为:

直线:

直线由无数个点构成。直线是面的组成成分,并继而组成体。没有端点,向两端无限延伸,长度无法度量。直线是轴对称图形。

它有无数条对称轴,其中一条是它本身,还有所有与它垂直的直线(有无数条)对称轴。在平面上过不重合的两点有且只有一条直线,即不重合两点确定一条直线。在球面上,过两点可以做无数条类似直线。

构成几何图形的最基本元素。在D·希尔伯特建立的欧几里德几何的公理体系中,点、直线、平面属于基本概念,由他们之间的关联关系和五组公理来界定。

点线之间的距离公式?

若有线为Ax+By+C=0,点坐标为(Xo,Yo),那么这点到这直线的距离就为:│AXo+BYo+C│/√(A²+B²)

过程与方法目标:

(1)通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识;

(2)把两条平行直线的距离关系转化为点到直线距离。

扩展资料:

定义法证:根据定义,点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长,设点P到直线的垂线为l',垂足为Q

则l'的斜率为B/A则l'的解析式为y-y₀=(B/A)(x-x₀)把l和l'联立得l与l'的交点Q的坐标为((B^2x₀-ABy₀-AC)/(A^2+B^2),,(A^2y₀-ABx₀-BC)/(A^2+B^2))由两点间距离公式得

PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2

=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2+[(-ABx₀-B^2y₀-BC)/(A^2+B^2)]^2

=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2

=A^2(Ax₀+By₀+C)^2/(A^2+B^2)^2+B^2(Ax₀+By₀+C)^2/(A^2+B^2)^2

=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2

=(Ax₀+By₀+C)^2/(A^2+B^2)

所以PQ=|Ax₀+By₀+C|/√(A^2+B^2),公式得证。

点到直线的距离公式是什么?

点到直线的距离常用公式:

设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:

d=│AXo+BYo+C│ / √(A²+B²)。

点到直线距离是连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度。目标在于通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识。

扩展资料

距离=|kx1-y1+b|/√[k²+(-1)²]

点到直线距离公式的推导如下:

对于点P(x0,y0)

作PQ垂直直线Ax+By+C=0于Q

作PM平行Y轴,交直线于M;作PN平行X轴,交直线于N

设M(x1,y1)

x1=x0,y1=(-Ax0+C)/B.

PM=|y0-y1|=|y0+(Ax0+C)/B|=|(Ax0+By0+C)/B|

同理,设N(x2,y2).

y2=y0,x2=(-By0+C)/A

PN=|(Ax0+By0+C)/A|

PM、PN为直角三角形PMN两直角边,PQ为斜边MN上的高

PQ=PM×PN/MN=PM×PN/√(PM²+PN²)=|Ax0+By0+C|/√(A²+B²)

参考资料:百度百科——点到直线距离

点到直线的距离公式

点到直线的距离公式:d=│AXo+BYo+C│/√(A²+B²)。

直线Ax+By+C=0,坐标(Xo,Yo)那么这点到这直线的距离就为:d=│AXo+BYo+C│/√(A²+B²)。

公式描述:公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。

推导点到直线的距离公式

坐标方法、向量方法、其他方法。

1、用坐标方法推导点到直线的距离公式

求过P与直线l垂直的直线,且与直线l交于点Q。然后,求出两直线交点Q的坐标。最后,利用两点间距离公式求出线段PQ的长度。这是最常见的一种方法,也是基本方法。

这种方法思路自然,但运算量较大。

2、用向量方法推导点到直线的距离公式

此种方法模仿教材33页,应用向量方法,求点到直线距离公式。此种方法采用直线的任意方向向量。

3、其他推导方法

为了得到PQ,考虑与坐标轴平行的线段,把它转化为与坐标轴平行的线段关系。

这种方法充分借助面积,直角三角形面积两种不同表示方法。此种方法思路清晰,运算量依然很大,包括求交点的坐标,两条直角边的长度,斜边的长度等。

点到线段的距离计算公式是什么?

点到线段的距离计算公式是:|AB|=[(x2-x1)^2+(y2-y1)^2]。

点到线距离之间的公式是|AB|=[(x2-x1)^2+(y2-y1)^2],点到直线的距离,即过这一点做目标直线的垂线,由这一点至垂足的距离。

通过对点到直线距离公式的推导,提高学生对数形结合的认识,加深用“计算”来处理“图形”的意识;把两条平行直线的距离关系转化为点到直线距离。

具体算法:

1、方法——经典算法

该算法直接用高中时所学习到的解析几何知识对点到线段的距离进行求解。其基本思想是先判断点在线段端点、点在线上等等的特殊情况,逐步的由特殊到一般。

当忽略点在线段上的特殊情况时,判断点到线段方向的垂线是否落在线段上的方法是通过比较横纵坐标的方式来判断,最后把不同的判断情况用不同的几何方式来进行处理计算得出结果。

由上面叙述的基本思路可以知道这种算法虽然很容易理解和接受,但从算法的实用性的角度分析还是有很大的缺点的,首先是算法复杂,计算量巨大,大量的比较判断、距离计算、角度计算等等。

实际应用中往往是需要求由大量线段组成的折线到某点的最短距离,如此用这样的算法计算量是不能想象的。其次经典算法中使用的一些简化运算的函数不利于语言的重新包装,如果想换编程语言的话,就比较麻烦了。

2、方法二——面积算法

该方法主要是先判断投影点是否在线段上,投影点在线段延长线上时,最短距离长度为点到端点的线段长度;当投影点在线段上时,先使用海伦公式计算三角形面积,再计算出三角形的高,即为最短距离。

运用面积算法求解点到线段最短距离思路很清晰,也很容易理解。从效率方面考虑,比如需要多次计算平方、根号,这对于大量数据进行运算是负担很重的。求面积就必须把三条边长全部求出,并且用到的海伦公式也需要进行开方运算,计算过程显得繁琐。

发表评论